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This is the physical security challenge 

your 

device 

attacker 

... let’s  secure 

that thing! 
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Result after years of costly hardware development = Patchwork 

mitigates 

side-channels*1 

prevents certain 

fault attacks*2 

‘secure’ 

key storage *3 

*1 HW crypto only 

*2 iff error count = 1 

*3 only obfuscation 
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Alternatives? Locking balloon away from attacker’s reach 

4 

physical security 

boundary 

... how can 

this  be done? 
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Anti-tamper mechanisms = active physical security boundaries 
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tamper-detection tamper-response zeroization 

goal: detect and counteract physical access 

battery-backed mechanisms for continuous protection 
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20 years of dominance: GORE envelope – now discontinued! 
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PCB with  
components Inner case 

Tamper respondent sensor 

Outer case 

Encapsulation 
with resin 

Connection to 
carrier PCB 

Finalized HSM 

Pictures from: TAMPER PROOF, TAMPER EVIDENT ENCRYPTION TECHNOLOGY (2013)  

Envelope 
with mesh 

+ 

Finalized wrapping 
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Strong regulatory need for generic countermeasures 

FIPS 140-2 Level 4 

 “Tamper detection 
envelope with tamper 

response and zeroization 
circuitry” 
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DoDI 5000.02 Enclosure 14 

“Appropriate cyber threat 
protection measures include, 

..., anti-tamper (AT), ...” 

PCI POS 

“The device uses  tamper-
detection and response 

mechanisms ...” 

unfortunately , very  little public work in this  area 
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Is the future of anti-tamper with batteries? 
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battery 

battery 

battery I add weight 
and bulk 

Temperature: 

+10° to +35° 
I’m 

discharged 

... can they  

survive the future? 
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What is a Physical Unclonable Function? 

 Solving the problem of key storage: 

 Keys stored in Secure Non-Volatile Storage (SNVS) 

 However: Delayering and optical analysis can defeat this 

 

How to prevent these “offline attacks”? 

 “Physical Unclonable Functions” (PUFs) 

 Basic idea: manufacturing variations cause ‘fingerprint’ 

 Example: start-up patterns of SRAM are unique 

 Error-Correcting Codes required to derive robust key 
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What is a Physical Unclonable Function? (Cont’d) 

 Silicon PUFs included in some commercial designs (Intrinsic-ID, Verayo) 

 FPGA-based PUFs available, too (Enthentica, AISEC) 

 

 Warning: silicon PUFs cannot prevent “online attacks”! 

 At runtime, key is generated and transferred over, e.g., data bus 

 Probing can extract key from data bus 

 

 Solution: tamper-evident PUFs that enclose significant portions of system 
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Related Work: Coating PUF (Tamper-Evident) 

 An IC is covered with an opaque coating containing random particles with high dielectric constant 

 Orientation and distribution of particles within the coating cannot be controlled 

 Random properties of coating  suitable structure for a PUF 

 Array of capacitive aluminum sensors in upper metal layer detects local coating properties 
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Source: Tuyls et al., “Read-Proof Hardware from Protective Coatings”, 2006 
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Related Work by MIT Lincoln Labs (Tamper-Evident) 

 Key generation takes ~ 620ms 

 

 No runtime tamper detection 

 

 No backside protection 

 

 No integrity check 

 

 Insufficient data to assess properties 
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Our approach: a PUF-based envelope – no battery required! 
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Envelope based on strong design rationale 

 A PUF-only enclosure is deemed insufficient 

 How to distinguish variation from defects? 

 How to enable rapid measurements during runtime? 

 

 Solution: interleaved mechanisms of different nature 

 Entropy of capacitance 

 Structural integrity of mesh 

 Protection against well-defined drill sizes (0.3mm) 

 Stochastic model for capacitance 
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Key aspects of a full-stack approach to physical security 

 Four conductive layers 

 Capacitive sensoric mesh 

 16x16 electrodes 

 Variation from etching etc. 
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 Early prototype based on 
discrete components 

 IC in next revision 

 to appear at DAC’18 

 Equidistant quantization 

 Symbols from higher-order 
alphabet as output 

 Additional ECC 

Physical Enclosure Measurement Circuit Algorithmic Process ing 
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Secure bootstrap with PUF key generation and tamper detection 
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Tamper Detection B1 = limit range of values 
Tamper Detection B2 = limit discrete rate of change 
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Statistical results support a good PUF behavior 
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 Result of 50 measured envelopes 

 Full-scale range of measurement circuit [-73fF;+73fF] 

  of PDF = 6.25 fF;  of measurement noise = 0.19 fF 
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Attack Results 
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Conclusion and future work 

 Conclus ion 

 A first step towards strong anti-tamper mechanisms without battery 

 Development of ad-hoc physical countermeasures challenging 

 Much more work in this area needed 

 

 Future work 

 Scale from prototype to real-world product 

 More detailed entropy assessment 

 Improving material properties 
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Thank you very much for your attention! 

Questions? 
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